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Abstract
Wavefunction correlations and density matrices for few or many particles are
derived from the properties of semiclassical energy Green functions. Universal
features of fixed energy (microcanonical) random wavefunction correlation
functions appear which reflect the emergence of the canonical ensemble as
N → ∞. This arises through a little known asymptotic limit of Bessel
functions. Constraints due to symmetries, boundaries and collisions between
particles can be included.

PACS numbers: 03.65.−w, 05.30.−d, 05.45.Mt

1. Introduction

The standard tools of quantum chaos investigations include random matrix theory and periodic
orbit theory (Gutzwiller trace formula), the Van Vleck–Morette–Gutzwiller propagator and
many techniques and phenomena derived from these approaches. Standing somewhat to the
side as an inspired insight is Berry’s conjecture, which loosely stated is the idea that as h̄ → 0
eigenstates will be indistinguishable from superpositions of infinitely many (local) plane waves
with random amplitude, direction and phase, but with a fixed wavelength appropriate to the
local kinetic energy. In two dimensions, these assumptions result in strictly Gaussian statistics
of the eigenfunctions and the autocorrelation function 〈ψ∗(�x)ψ(�x + �R)〉 = J0(ka), where k is
the local wave number and | �R| = a. An equivalent result exists for systems with disorder [1]
cementing the connection between Berry’s conjecture and disordered systems.

The Berry random plane wave (RPW) [2] hypothesis is free of any specific dynamical
information, except the fixed total energy, which defines the ‘ensemble’ (i.e. microcanonical).
The perspective developed here suggests that by extending the RPW hypothesis we can
conveniently accommodate many other constraints, incorporating information about real
systems. In fact this program has already begun, with Berry’s inclusion of the presence
of nearby hard walls [3], and Bies and Heller’s soft boundary results [4], and multiple hard
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walls [5]. Related work by Urbina and Richter [6] and one of us [7] may also be viewed in
this light.

The idea of random waves subject to constraints is not confined to one particle in two
dimensions. Indeed, Berry gave the N-dimensional formula for free particles in his 1977
paper [8]. Since the underlying idea in the RPW hypothesis is uniform randomness within a
quantum context, i.e. the underpinning of quantum statistical mechanics, we must encounter
some familiar territory as the RPW hypothesis is extended to the large-N limit. In 1994,
Srednicki had suggested that the Berry random wave hypothesis was indeed a foundation
for quantum statistical mechanics [9], and showed that the appropriate canonical ensemble
was reached for large N, depending on particle statistics. The present paper shows more
specifically what happens as the number of particles increases, through a nonstandard and
apparently unpublished asymptotic form for Bessel functions (we have not been able to find
it in the literature, although it ‘ought’ to be there), which encodes the equivalence of the
canonical and microcanonical ensembles of statistical mechanics. In making the connections
to quantum statistical mechanics one also needs procedures for incorporating constraints,
which are an essential aspect of the theory. Thus, our procedures for generalizing the RPW
to include constraints, mentioned above, are an essential new feature, since the constrained
eigenstates are no longer random in Berry’s (and Srednicki’s) original sense.

Given a continuum at energy E, such as in an enclosure with walls very far away, we can
perform the average over all random waves as a trace, i.e.

〈ψ∗(�x)ψ(�x ′)〉 = Tr[δ(E − H)|�x〉〈�x ′|], (1)

which immediately yields Berry’s result, apart from normalization which we choose differently
here. However, a trace over a basis is independent of any unitary transformation on that basis,
so it does not matter whether we use a trace over a complete set of random waves or simple
local plane waves; both give J0(ka) for the case of one free particle in two dimensions. In this
way, the imaginary part of the retarded Green function − 1

π
Im[G+(E)] = δ(E − H) becomes

central, formally convenient and equivalent to Berry’s RPW hypothesis.

2. Preliminaries

We begin by reviewing the well-known formalism to establish context and notation. The
Green function completely characterizes a quantum system, whether it is interacting or not,
or has few or many degrees of freedom. The retarded Green function G+, i.e.

G+ = P
1

E − H
− iπδ(E − H), (2)

where P stands for the principal value of the integral, is the basis for wavefunction statistics
and density matrix information, through the following relations, with a convenient choice of
normalization:

〈ψ(x)ψ∗(x′)〉 = − 1

π
Im〈x|G+|x′〉/ρ(E) (3)

= 〈x|δ(E − H)|x′〉/ρ(E), (4)

where

ρ(E) = Tr[δ(E − H)] (5)

and where 〈· · ·〉 stands for the average over the degeneracies. We take these degeneracies
to be of dimension up to ND − 1, where N is the number of particles and D is the spatial
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dimension each particle lives in. (We use boldface notation, e.g. x for the N × D degrees of
freedom.) If true degeneracies do not exist in a particular system, we can artificially open the
system up to a continuum. For example, a two-dimensional closed billiard does not have a
degeneracy, but it acquires one if we open a hole in it and let it communicate with the outside
unbounded 2D space. Of course this changes the billiard properties, and the size of the hole
might be problematic, but in fact we shall never really have to open a system up in this way.
The quantity δ(E − H) then implies the average over all scattering wavefunctions at fixed
energy E.

There are other interpretations which can be put on the average correlation 〈ψ(x)ψ∗(x′)〉;
for example, we can imagine a large number of potentials which differ in some far away place,
and in a way so as to all have an eigenvalue at a particular energy. Then, the average has the
interpretation of the average over this ‘disorder’ ensemble. A slightly different procedure is
advocated by Richter et al, wherein an energy average is taken [6]. Another interpretation
can be applied to individual eigenstates in a closed system, assuming they are at least locally
uniform in their properties, by taking the average over different points of origin x. This is
particularly appropriate when the analogous classical system is chaotic, as mentioned above
[2]. We will be evaluating the Green functions semiclassically in what follows, restricting the
time over which the contributing trajectories propagate.

The wavefunction correlation is equal to the coordinate space matrix element of the
constant energy density matrix

〈ψ(x)ψ∗(x′)〉 = 〈x|δ(E − H)|x′〉/ρ(E) = ρ(x, x′, E). (6)

Reduced density matrices can also be derived from wavefunction correlations, e.g.

ρ̃(�x1, �x ′
1, E) =

∫
d�x2 d�x3 · · · d�xNρ(�x1, �x2, . . . ; �x ′

1, �x2, . . . ;E), (7)

the one-particle reduced density matrix.
We can approach the correlations via Fourier transform from the time domain, since

δ(E − H) = 1

2πh̄

∫ ∞

−∞
eiEt/h̄ e−iHt/h̄ dt. (8)

Thus, the statistics, density matrices and correlations are derivable without further averaging
by knowing the time propagator.

In the following, we define the Green function propagator G(x, x′, t) and the retarded
Green function propagator G+(x, x′, t) as

G(x, x′, t) = 〈x| e−iHt/h̄|x′〉, G+(x, x′, t) = −i

h̄
�(t)〈x| e−iHt/h̄|x′〉, (9)

where �(t) is the Heaviside step function �(t) = 0, t < 0,�(t) = 1, t > 0. It is very
rewarding to expand the propagator in semiclassical terms, involving short time (zero length)
and longer trajectories. We take Gdirect(x, x + r, t) = 〈x| exp[−iHt/h̄]|x + r〉, the very short-
time semiclassical propagator, which for N particles each in D dimensions reads

Gdirect(x, x + r, t) ≈
( m

2π ih̄t

)ND/2
eimr2/2h̄t−iV (x+ r

2 )t/h̄, (10)

where r2 = |r|2.
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It is not difficult to cast the Fourier transform of this short-time version to fit the definition
of a Hankel function, i.e.

G+
cl(x, x + r, E) = −i

h̄

∫ ∞

0

( m

2π ih̄t

)ND/2
eimr2/2h̄t−iV (x+ r

2 )t/h̄ eiEt/h̄ dt

= − im

2h̄2

(
k2

2πkr

)d

H
(1)
d (kr), (11)

where d = ND/2−1, k = k(x+r/2, E),H
(1)
d (kr) = Jd(kr)+iNd(kr) is the Hankel function

of order d and Jd is the regular Bessel function of order d. The wave vector k varies with
the local potential, i.e. h̄2k(x, E)2/2m = E − V (x). Here, using only the extreme short-time
version of the propagator, we must suppose r is not large compared to significant changes in
the potential, but this restriction can be removed by using the full semiclassical propagator
rather than the short-time version. For the case of one particle in two dimensions, d = 0, and
we recover Berry’s original result for one particle in 2D, 〈ψ∗(�x)ψ(�x + �r)〉 ∝ J0(kr).

According to the short-time approximation, for any N,

〈ψ(x)ψ∗(x + r)〉 ≈ − 1

π

Im
[
G+

cl(x, x + r, E)
]

ρ(E)
= 1

ρ(E)

m

2πh̄2

(
k2

2πkr

)d

Jd(kr), (12)

where k = k(x, E). This result includes interparticle correlations through the potential V (x)

and the spatial dependence of k = k(x, E); the diagonal r = 0 limit (following section) is
equivalent to classical statistical mechanics. The implications of this for the non-diagonal
short-time Green function are intriguing. The way r is defined, it does not matter whether one
particle is off diagonal (xi 
= xi ′) or several or all of them. For given r, the Green function
will be the same, apart from changes in the potential V (x + r/2).

It is interesting that although the short-time Green function is manifestly semiclassical, the
energy form, e.g. equation (12), is obtained by an exact Fourier transform of the semiclassical
propagator rather than by stationary phase.

3. Diagonal limit

The diagonal (r → 0) N-body Green function is obtained using the asymptotic form

lim
r→0

Jd(kr) = 1

�(d + 1)

(
kr

2

)d

≈ 1√
2πd

(
ekr

2d

)d

; (13)

we obtain

− 1

π
Im

[
G+

cl(x, x, E)
] ≈ m

2πh̄2

1

�(d + 1)

(
k2

4π

)d

≈ m

2πh̄2

1√
2πd

(
ek2

4πd

)d

, (14)

where the second form uses Stirling’s approximation, n! ∼ nn e−n
√

2πn, and is appropriate
below when we consider large N. We note that this behaves as k2d ∼ (E −V (�x))d . This factor
is familiar with the computation of the classical density of states. Tracing over all �x results in∫

dx
m

2πh̄2

1

�(d + 1)

(
k2

4π

)d

=
∫

dx dp
hND

δ(E − Hcl(p, x)) = ρcl(E), (15)

i.e. the classical density of states. The association of the short-time propagator with the classical
Hamiltonian and classical density of states is well known. The Berry RPW hypothesis, the
short-time propagator and the classical or Weyl (sometimes called Thomas–Fermi) term in the
quantum density of states are all closely related.
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The quantum spacial integral is over all coordinates, so how does the classical partition
function emerge if the classical integral is only over classically allowed coordinates? For
forbidden positions, k is imaginary and can be written as, say, iκ . An identity for Hankel
functions can then be used

(
in+1H(1)

n (ix) = 2
π
Kn(x)

)
to show that the Green function is real

so that the imaginary part is zero, explaining why the integral is only over classically allowed
positions.

As long as r = 0 (i.e. diagonal Green function) the results obtained within the short-
time propagator approximation for any quantity in the presence of a potential (including
interparticle potentials such as atom–atom interactions) will be purely classical. Since we will
be discussing the equivalence of the results from the different ensembles for r 
= 0, it is useful
to recall how the classical coordinate space densities in the different ensembles can be shown
to coincide since this corresponds to the r = 0 case.

The normalized phase-space density in the microcanonical ensemble and the phase-space
density in the canonical ensemble are given by

ρcl(p, x, E) = 1

ρcl(E)
δ(E − Hcl(p, x)) (16)

and

ρcl(p, x, β) = 1

Qcl(β)
e−βHcl(p,x), (17)

respectively. The density of states and partition function are of course the normalization
factors so that

ρcl(E) =
∫

dx dp δ(E − Hcl(p, x)), (18)

Qcl(β) =
∫

dx dp e−βHcl(p,x). (19)

Integrating each phase-space density over momentum space allows us to compare the
coordinate space densities

ρcl(x, E) = p2d∫
dxp2d

, (20)

ρcl(x, β) = e−βV (x)∫
dx e−βV (x)

, (21)

with p = √
2m(E − V (x)).

Using the relationship between E and β, E − 〈V 〉 = ND
2β

, where 〈V 〉 is the ensemble
average of the potential in one of the statistical ensembles, the coordinate space density
becomes

p2d = (2m(d + 1)/β)d
(

1 +
(〈V 〉 − V (x))β

d + 1

)d

. (22)

In the limit N → ∞ (d → ∞), this is

p2d = (2m(d + 1)/β)d e(〈V 〉−V (x))β , (23)

p2d∫
dxp2d

= e−V (x)β∫
dx e−V (x)β

. (24)

This is one of the standard ways of establishing a connection between the ensembles [10].
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Since the diagonal Green function gives classical results, we can use it to study classical
properties. For example, we can enquire about the average two-particle spacing distribution
ρE(r12) or the probability density for a single particle PE(�x1) starting with the short-time
semiclassical Green function and the results will coincide with classical microcanonical
statistical mechanics. This statement holds for all N. Similarly, in the large-N limit the
canonical ensemble results for these quantities must emerge. This point becomes more
interesting for the non-diagonal case, considered next.

4. Link to the canonical ensemble

4.1. Bessel functions become Gaussians

As yet we have found nothing too surprising or useful beyond standard classical statistical
mechanics. This changes when we consider the large-N limit for the non-diagonal Green
function, r 
= 0. Taking the large-N limit of equation (12), we are confronted with a new
question about Bessel functions. The large-d limit of Jd(x) is indeed well known, but this is
not yet sufficient for our purposes. It reads

lim
d→∞

Jd(kr)

(kr)d
= 1

2d�(d + 1)
≈ 1√

2πd

( e

2d

)d

. (25)

This is the standard formula given in the usual references. Equation (25) should be the first
term in a power series for Jd(kr) in kr . Another standard result is the power series expansion,
valid for all d and kr

Jd(kr) =
∞∑

m=0

(−1)m

m!�(m + d + 1)

(
kr

2

)2m+d

. (26)

We actually require a different asymptotic result. What make our demands unusual is that,
assuming we want the energy to increase in proportion to the number of particles (appropriate
to many applications of the large-N limit), then k ∼ √

E ∼ √
N ∼ √

d; this means that for
fixed r, the combination (kr) increases as

√
d as d → ∞. If the argument of the Bessel

function increases without bound along with its order, some new considerations come into
play. We find the desired form using equation (26), after summing a series recognized as that
of a Gaussian Taylor expansion,

lim
d→∞

1

(kr)d
Jd(kr) = 1

2dd!

∞∑
m=0

1

m!

( −k2r2

4(d + 1)

)m

= 1

2dd!
e−k2r2/(4(d+1)), (27)

where again h̄2k2/2m = E − V (x). Note that as d → ∞, the argument of the Gaussian holds
fixed because of the factor of d +1 in the denominator of that argument. Figure 1 illustrates the
convergence to the Gaussian as N increases. The asymptotic limit in equation (27) is not in the
usual references, although related results have been given for N-bead polymer random chain
end-to-end distributions [11]. The connection between the path integral for the propagator
and polymer chains is well known [12].

It is interesting that a Gaussian emerges from Bessel functions in the large-N limit. We
can put equation (27) together with equations (12) and (4), and express the result, as N → ∞,

〈ψ(x)ψ∗(x + r)〉 = ρ(x, x′, E) → 1

ρ(E)

m

2πh̄2d!

(
k2

4π

)d

e−k2r2/4(d+1). (28)

For noninteracting particles moving in zero potential but confined to volume V , the
short-time approximation becomes exact and k is constant. For this system, the wavefunction
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Figure 1. As N increases, the combination 1
xd Jd (x), where d = ND/2 − 1, approaches a

Gaussian. This is the key link between the quantum microcanonical and canonical ensembles.

correlation becomes

〈ψ(x)ψ∗(x + r)〉 = ρ(x, x′, E) → 1

V N
e−k2r2/4(d+1). (29)

Something familiar is emerging, here derived in the unfamiliar context of fixed energy
(microcanonical ensemble). For a comparison, we recall the standard result for the ideal
gas at temperature T [13]:

〈x|e−βH |x + r〉
Tr[e−βH ]

= ρ(x, x′, β) = 1

V N
e−πr2/λ2

, (30)

where λ = h/
√

2πmκT is the thermal wavelength. Indeed for the free particle case, k is fixed
by E and 〈K〉 = D/2NκT = h̄2k2/2m, where K is the kinetic energy and κ is Boltzmann’s
constant,

e−k2r2/4(d+1) = e−πr2/λ2
. (31)

The canonical ensemble result for the propagator has ‘dropped out’ of the asymptotic
large-N limit of a microcanonical Green function, at least for noninteracting particles, and an
unusual asymptotic form for the Bessel function has emerged as the link. With some caveats,
the statement

δ(E − H) ∼ e−βH (32)

has a meaning in the large-N limit, where it is understood that E grows as N, and a temperature
is extracted. At a qualitative level, equation (32) merely expresses the known equivalence of
the ensembles. In the case of an interaction potential, the relation between E and temperature
is of course problematical.

4.2. Interacting particles—short time limit

We can say more about interacting particles using only the short-time propagator introduced
above. Longer time events will be discussed in section 6. The short-time approximation to the
correlation function for large N, which is equal to the matrix elements of the density operator
in coordinate space using our normalization (equation (28)), is given by

ρcl(x, x′, E) = 1

ρ(E)

m

2πh̄2d!

(
k2

4π

)d

e−k2r2/4(d+1), (33)
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with h̄k =
√

2m
(
E − V

( x+x′
2

))
and r = |x − x′|. Again, the Gaussian form of this expression

arises from the asymptotic limit of the Bessel function. In the interacting case this can again
be brought into the same form as the equivalent expression at constant temperature:

ρcl(x, x′, β) = 1

Z(β)

(
m

2πβh̄2

)d+1

e
− mr2

2h̄2β
+V ( x+x′

2 )β
. (34)

In order to make the connection, we must identify the energy with a certain temperature. This
relationship between E and β is

E − 〈V 〉 = ND

2β
, (35)

where 〈V 〉 is the ensemble average of the potential in one of the statistical ensembles. Using
this relationship in equation (33) gives

ρcl(x, x′, E) = 1

ρ(E)

m

2πh̄2d!

(
k2

4π

)d

e
− mr2

2h̄2β e− m(〈V 〉−V )r2

2h̄2(d+1) . (36)

In order for equation (36) to be equivalent to equation (34), the term with 〈V 〉 − V must be
negligible. This is true for configurations of particles which possess the typical (and vastly
most probable) total kinetic energy. Since the typical total kinetic energy is by far the most
probable, nearly all points in configuration space lead to small values of 〈V 〉 − V , and that
term is negligible almost always. The remaining terms in equations (36) and (34) are shown
to be the same by the equivalence of the classical ensembles as shown in section 3.

It is also telling to trace over the coordinates of all but one of the interacting particles,
given by a coordinate �y. We thus seek the reduced density matrix, diagonal or off diagonal in
�y. The trace over many coordinates will be overwhelmingly dominated (in the large-N limit)
by the most probable total kinetic energy for all the particles. Then, we find

ρcl(�y, �y ′, β) ∼ λ−3N−2 e−πr2/λ2
, (37)

where r2 = |�y − �y ′|2 and λ = h/
√

2πmκT . Thus, the quantum-mechanical single-particle
Green function and density matrix make sense as their imaginary time counterparts in the
N → ∞ limit, in accordance with the well-known results for the canonical ensemble.

4.3. Large-N limit and Boltzmann averaged Green functions

Even though it is a necessary consequence of the equivalence of the ensembles, it is interesting
to establish the generality of the Boltzmann average over the energy of a noninteracting
subsystem in the following way. Suppose N − M particles are no longer interacting with the
remaining M particles, but their states are correlated by having been in contact in the past with
the total energy fixed at E. In the time domain and in an obvious notation, we have

G+
N(y, z; y′, z′, t) = ih̄G+

N−M(y, y′, t)G+
M(z, z′, t). (38)

Then, the Fourier convolution theorem can be applied to the Fourier transform into the energy
domain, i.e.

G+
N(y, z; y′, z′, E) = ih̄

2π

∫ ∞

−∞
G+

N−M(y, y′, E − E′)G+
M(z, z′, E′) dE′, (39)

which incidentally leads to some rather unlikely looking identities for Bessel functions; the
reader may easily generate them. Our purpose is served if, focusing on the subsystem of M
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particles, we trace over the N − M y-coordinates. This gives

Try
[
G+

N−M(E − E′)
] ∼ lim

y′→y
− m

2h̄2

×
(

1

�(dN−M + 1)

(
kN−M

2

4π

)dN−M

+ i
�(dN−M)

πdN−M +1|y′ − y|2dN−M

)
(40)

times a volume factor, in the case of an ideal gas. The second term is not a function of E′.
Therefore, the integral of it times GM(z, z′, E) is proportional to δ(z′ − z). As long as z 
= z′

that term is zero. Neglecting all unimportant (for this argument) factors, this leaves

Try
[
G+

N−M(E − E′)
] ∝ (E − E′)dN−M = EdN−M

(
1 − E′

E

)dN−M

∼ EdN−M e−βE′
, (41)

with of course β = 1/κT . In arriving at equation (41), we used E = D
2 NκT for the case of

particles embedded in D dimensions. Finally, we arrive at

Try
[
G+

N(E)
] ∝

∫ ∞

−∞
e−βE′

G+
M(z, z′, E′) dE′ = G+

M(z, z′, β) (42)

in the large-N limit. This establishes the generality of the Boltzmann average over the
subsystem energy for large N. This discussion establishes again the connection between the
canonical and microcanonical ensembles, however in a way not involving the Bessel functions
and their asymptotic form, so it is less general than other results in this paper valid for any N.

4.4. Stationary phase canonical limit

It is also possible to recover the Gaussian form in equation (28) by carrying out the integral
in equation (11) by stationary phase, provided the real factor involving t in the denominator is
taken into the exponent, as −ND/2 log t , i.e.

G+
cl(x, x + r, E) = −i

h̄

∫ ∞

0

( m

2π ih̄

)ND/2
eimr2/2h̄t−iV (x+ r

2 )t/h̄+iEt/h̄−ND/2 log t dt. (43)

The complex stationary phase point t∗ in the large-N limit becomes t∗ = −iNDh̄/(2(E−V )),
yielding the same result as in equation (28), with h̄2k(x, E)2/2m = E − V (x), and making
this another route between the quantum microcanonical and canonical ensembles. Since the
positions are arbitrary we cannot however identify the average kinetic energy with E − V ,
and thus without further averaging we cannot associate t∗ with any inverse temperature. It
is interesting nonetheless that there is a complex time t∗ appropriate to every position x,
even if that time is not related to the temperature. For an ideal gas the stationary phase time
is t∗ = −ih̄/κT = −iβh̄, after making the identification E = D/2NκT . A discussion
about traces over most of the coordinates and the recovery of the usual temperature through
〈K〉 = D/2NκT proceeds as in section 4.2.

5. Constraints

In the large-N limit the ergodic hypothesis is strongly motivated, but statistical mechanics does
not presuppose that ergodicity is unchecked; rather constraints are always present, such as
walls and boundaries which control volume. Ergodicity is then defined with respect to these
constraints. The guiding idea in this paper, i.e. the extended Berry RPW hypothesis, is that
eigenstates of the full system are ‘as random as possible, subject to prior constraints’. In this
way, thermodynamic constraints arise naturally. The real time, real energy (microcanonical)



9268 E J Heller and B R Landry

semiclassical Green function approach not only automatically generates the averages required
to get appropriate wavefunction statistics, but also provides a natural way to include many
constraints such as walls, symmetries and even the existence of collisions between particles
by going beyond the short time limit term to include returning (not necessarily periodic)
trajectories. The semiclassical ansatz for these extended problems in the presence of
constraints is

G(x, x′, t) ≈ Gdirect(x, x′, t) +
∑

j

Gj (x, x′, t), (44)

where Gj(x, x + r, t) is a semiclassical (Van Vleck–Morette–Gutzwiller) Green function

Gj(x, x′; t) =
(

1

2π ih̄

)ND/2 ∣∣∣∣Det

(
∂2Sj (x, x′; t)

∂x∂x′

)∣∣∣∣
1/2

exp
(

iSj (x, x′; t)/h̄ − iπνj

2

)
(45)

corresponding to the j th trajectory contributing to the path from x to x + r, and
Gdirect(x, x + r, t) is given by equation (10). The short-time term Gdirect(x, x + r, t) is singled
out as the shortest contributing trajectory: supposing r to be small compared to distances to
walls, etc, we still have a short time, ballistic trajectory as quite distinct from trajectories which
have travelled some distance away and come back. There are cases where this separation is
not clean; for such cases we can adjust notation accordingly. Note that since a trace over all
positions is not being taken, there is no appearance semiclassically of periodic orbits as the
only surviving contributors. ‘Closed’ orbits however can play a large role semiclassically, a
fact recognized long ago by Delos [14].

5.1. N particles and a wall

A very useful example is provided by a plane Dirichlet wall felt by all the particles (e.g.
ψ(�x1, �x2, . . . , �xN) = 0 for yi = 0, i = 1, . . . , N), as in a gas confined by a rigid container.
The Green function and eigenfunctions must vanish if one or more particles approaches this
wall. We can use the method of images, generalized to N particles, if the particles are
noninteracting. (The interacting case can in principle be handled by semiclassical trajectory
techniques which we bring up in the next section.)

The Green function Gwall(x, x′) will consist of the shortest distance contribution for which
all particles take a direct path from x to x′, plus paths where one particle has bounced off the
wall, paths where two particles have, etc. These histories are included automatically if we
apply the symmetrization operator which imposes the image reflections. This operator can be
written as

R =
N∏
i

(1 − Ri) = 1 −
∑

i

Ri +
∑
i<j

RiRj − · · · , (46)

where Ri is the operator for reflection about the y = 0 axis for the ith particle. Applied to the
Green function G(x, x + r, t), considered as a function of the coordinates in x in the absence
of the wall, R yields the series

Gwall(x, x′, t) = Gdirect(x, x′, t) −
∑

i

Gi(x, x′, t) +
∑
i<j

Gij (x, x′, t) − · · · , (47)

where Gi(x, x′, t) corresponds to the ith particle getting from �xi to �x ′
i by bouncing off the wall

while the others take direct paths, etc. The Fourier transform gives an analogous equation for
Gwall(x, x′, E). The effect of the symmetrization is to create Green function sources reflected
across the wall and given proper sign, in the manner familiar from the method of images.
The short-time path is shown by the direct path solid line in figure 2, corresponding to the
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wall

Figure 2. A short and a bouncing path for a particle propagating near a wall. The bounce
contribution, if viewed by the image method, is equivalent to a contribution of opposite sign
coming from the reflected point �xR with the wall removed.

term Gst (x, x′, t). The bounce path is equivalent to a source reflected across the wall with an
opposite sign, i.e. the method of images. Define

− 1

π
Im

[
G+

st (x, x + r, E)
] = m

2πh̄2

(
k2

2π

)d
Jd(kr)

(kr)d
≡ a(k)Fd(kr), (48)

then

− 1

π
Im

[
G+

wall(x, x′, E)
] = a(k)


Fd(kr) −

∑
i

Fd(kri) +
∑
i<j

Fd(krij ) − · · ·

 . (49)

This is the general result for any N. It would appear to be difficult to take it further, since all
the distances, e.g.

rij =
√ ∑

m
=i,j

|�xm − �x ′
m|2 +

∣∣�xR
i − �x ′

i

∣∣2
+

∣∣�xR
j − �x ′

j

∣∣2
, (50)

where �xR
j are the reflected j th particle coordinates, involve square roots. However, if we use

the large-N asymptotic form, we find, using Fd(kr) → exp[−k2r2/4(d + 1)]/2dd!,

− 1

π
Im[Gwall(x, x′, E)] = a(k)

2dd!

N∏
i

(
e−γ r2

i − e−γ (rR
i )2) = a(k)

2dd!
e−γ r2

N∏
i

(
1 − e−γ2

i

)
, (51)

where γ = k2/4(d + 1) = π/λ2 and 2
i = (

rR
i

)2 − r2
i . Since ri is the ‘direct’ distance from

�xi to �x ′
i , (see figure 2), 2

i records the distance change upon reflection of the ith particle. We
note that 2

i (and thus the Green function) vanishes as any particle approaches a wall in either
x or x′. It is also simple to see that the single-particle density ρ(�x) in this noninteracting case
becomes, for large N,

ρ(�x) = ρ0
(
1 − e−4γ x2)

, (52)

where x is the distance to the wall and ρ0 is the density far from the wall.
Formulae (49) and (51) generalize Berry’s result [15] for the wavefunction squared of one

particle in two dimensions near a wall, namely

〈|ψ(�x)|2〉 = (1 − J0(k|�xR − �x|))∫
d�x(1 − J0(k|�xR − �x|)) . (53)
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Figure 3. The particle symmetry or antisymmetry condition is equivalent to requiring mirror
symmetry or antisymmetry across the �xi = �xj (hyper)plane. This corresponds to having additional
contributions from the images of the particles reflected over the symmetry planes.

The Gaussian we get for large N has a very simple interpretation. First, we note that for
noninteracting systems in the canonical ensemble we can write the total density matrix as a
product of one-particle density matrices. This is essentially the form of equation (51), since
we can write each one-particle density matrix as

ρ(�x, �x ′, β) = e−γ |�x−�x ′ |2/N
(
1 − e−γ (|�xR−�x ′ |2−|�x−�x ′ |2))∫

d�x(
1 − e−γ |�xR−�x|2) →

(
1 − e−γ |�xR−�x|2)∫

d�x(
1 − e−γ |�xR−�x|2) , (54)

where the second form is the diagonal element. However, equation (54) also arises as
the density matrix obtained from the Boltzmann average of Berry’s result; i.e. averaging the
fixed energy results over a canonical distribution of energies, as can be seen from the
integral ∫ ∞

0 k(1 − J0(k|�xR − �x|)) e−βh̄2k2/2m dk∫ ∞
0 k e−βh̄2k2/2m dk

= (
1 − e−m|�xR−�x|2/2βh̄2)

. (55)

For D = 2 and N = 1, a Boltzmann average yields the Gaussian. Indeed this necessarily
holds in any number of dimensions, i.e. the appropriate Boltzmann average of Jd(kr)/(kr)d

must yield a Gaussian for any d. In the thermodynamic N → ∞ limit for noninteracting
particles, each particle separately is Boltzmann distributed over energy, so the result must be
the same as a Boltzmann average of the one particle results for any dimension D and for any
constraints.

5.2. Symmetries—fermions and bosons

Particle symmetry is an essential part of the many-body problem. Its effect, like other
symmetries, is to generate permutations where the distances have changed due to particle
exchange. Figure 3 shows this effect graphically. It is gratifying to see directly that
permutations which induce large new distances (coming from remote pairs of particles, where
‘remote’ is a relative term depending on the temperature) make little contribution. Consider
N noninteracting fermions or bosons, we wish to compute the reduced density matrix for
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two fermions or bosons. This is a well-known result for N → ∞ [13]. The symmetric or
antisymmetric Green function is

GS/A(x, x + r, E) = 1

N !

∑
n

εn

−im

2πh̄2

(
k2

2π

)d
Hd(krn)

(kr)d
, (56)

where rn =
√

|�x1 − �x ′
p1

|2 + · · · + |�xN − �x ′
pN

|2, {p1, . . . , pN } is the nth permutation of

{1, . . . , N} and εn = 1 if the parity of the permutation is even and εn = ±1 if the parity
of the permutation is odd (with the upper sign for bosons and the lower sign for fermions).

〈ψ∗( �x1 · · · �xN)ψ( �x1 · · · �xN)〉 = − 1

π

Im(GS/A(x, x + r, E))

ρ(E)

= 1

ρ(E)N !

∑
n

εn

m

2πh̄2

(
k2

2π

)d
Jd(krn)

(kr)d
. (57)

In the limit that N is large, this becomes

〈ψ∗( �x1 · · · �xN)ψ( �x1 · · · �xN)〉 = 1

ρ(E)N !

N!∑
n

εn

m

2πh̄2d!

(
k2

4π

)d

e−k2r2
n/4(d+1). (58)

The diagonal component of this with the rn’s written out explicitly is

〈ψ∗( �x1 · · · �xN)ψ( �x1 · · · �xN)〉 = m

2ρ(E)N !πh̄2d!

(
k2

4π

)d

×
N!∑
n

εn e−k2(�x1−�xp1)
2/4(d+1) · · · e−k2(�xN−�xpN )2/4(d+1). (59)

Up to the normalization constant this is the constant temperature density matrix for N
noninteracting fermions or bosons:

〈ψ∗( �x1 · · · �xN)ψ( �x1 · · · �xN)〉 = m

2ρ(E)N !πh̄2d!

(
k2

4π

)d

×
N!∑
n

εn e−m(�x1−�xp1)
2/2βh̄2 · · · e−m(�xN −�xpN )2/2βh̄2

. (60)

Again the identification E = D
2 NκT was used. This can be rewritten as an integral over wave

vectors

〈|ψ(x)|2〉 = A

N!∑
n

εn

∫
d�k1 · · · d�kN e−βh̄2k1

2/2m+i�k1·(�x1−�xp1) · · · e−βh̄2kN
2/2m+i�kN ·(�xN −�xpN ), (61)

where A = m

2ρ(E)N!πh̄2d!

(
k2

4π

)d( βh̄2

2πm

)d+1
is the normalization constant. Rearranging gives

〈|ψ(x)|2〉 = A

N!∑
n

εn

∫
d�k1 · · · d�kN e−βh̄2(k1

2+···+kN
2)/m ei(�k1−�kp1)·�x1 · · · ei(�kN −�kpN )·�xN . (62)

If the volume that the particles are confined to is large but finite, then∫
〈|ψ(x)|2〉 d�x3 · · · d�xN

= AV N−2
N!∑
n

εn

∫
d�k e−βh̄2k2/2m ei(�k1−�kp1)·�x1 ei(�k2−�kp2)·�x2δ�k3,�kp3

· · · δ�kN ,�kpN
. (63)
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Figure 4. A short ballistic and a colliding path both lead to the same final point for a particle
propagating near a localized repulsive potential. The colliding path cannot be treated by the short-
time approximation, rather, a Van Vleck Green function is required. In this term, all but the ith
particle remain in place.

For fermions if the wave vectors of any two particles are the same, the term is killed by the
term with the wave vectors reversed in accordance with the Pauli principle. This leaves only
two terms∫

〈|ψ(x)|2〉 d�x3 · · · d�xN = AV N−2
N!∑
n

εn

∫
dk e−βh̄2k2/2m ei(�k1−�kp1)·�x1 ei(�k2−�kp2)·�x2 . (64)

For bosons there are also only two types of terms, but each is multiplied by the same factor
since like terms are added together. Either way, carrying out the integral over k,∫

〈|ψ(x)|2〉 d�x3 · · · d�xN =
(
1 ± e−m( �x1− �x2)

2/βh̄2)∫
d�x1 d�x2

(
1 ± e−m( �x1− �x2)2/βh̄2) . (65)

This is a well-known result for the density of two noninteracting fermions or bosons.

6. Scattering

A hard wall is a potential energy feature which induces a boundary condition, requiring the
wavefunction or Green function to vanish as the wall is approached. Softer potentials do
not induce fixed boundary conditions and require a different treatment. A potential may still
however be thought of as a constraint: we consider waves as random as possible subject to
the existence of a potential, be it fixed or interparticle. In practice, this means we return to the
Green function formulation used throughout.

Consider a soft repulsive or attractive potential somewhere in a noninteracting gas.
Assuming no boundaries, mutually noninteracting particles can interact with the potential
0 or 1 times. (We assume, for simplicity, that the potential is short ranged. Because of the
ergodicity assumption inherent to the random wave hypothesis, the presence of remote walls
would actually make no difference.) This circumstance develops along lines very similar to
the wall, except that we cannot use the method of images. It illustrates the use of the full
semiclassical propagator within this formalism.

Equations (46) and (47) both hold, with the effect of Ri changed to mean ‘the ith particle
takes the path from initial to final coordinates in which it deflects from the potential, if such
a path exists classically’. For N particles, there is a ‘direct’ term in equation (47) where no
particle interacts with the potential, N terms where one of them does, etc. We have, in the
simple case shown in figure 4 and in analogy with equation (47),
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G(x, x′, t) = Gdirect(x, x′, t) +
∑

i

Gbounce,i (x, x′, t) +
∑
i,j

Gbounce,i,j (x, x′, t) + · · · , (66)

with Gdirect(x, x′, t) given by equation (10) and, e.g.

Gbounce,i (z, yi , z + r, y′
i , t) ≈

(m

t

) (N−1)D

2

(
1

2π ih̄

) ND
2

×
∣∣∣∣∂2Si(yi , y′

i; t)

∂yi∂y′
i

∣∣∣∣
1
2

eimr2/2h̄t−iV (z+ r
2 )t/h̄+iSi (yi ,y′

i ;t)/h̄− iπνi
2 . (67)

Considering this term where only the ith particle with coordinate yi interacts with the
potential, we have N − 1 ‘spectator’ z particles, and the propagator becomes a product
of the noninteracting Green function for N − 1 particles and a more complicated Van Vleck
semiclassical term for the colliding particle. The noninteracting part contributes a term
(N − 1)D/2 log t in the exponent along with the one-particle classical action of the ith
particle. For sufficiently large N, and tracing over the z particles, this factor leads again to
the usual time condition t∗ = −iβh̄ and a thermal average of the one-particle energy Green
function under the Fourier transform from time to energy, as in equation (42):

G(y, y′, E) ≈ G(y, y′, β) = Gdirect(y, y′, β)

+
∑

i

Gbounce,i (y, y′, β) +
∑
i,j

Gbounce,i,j (y, y′, β) + · · · . (68)

t∗ = −iβh̄ becomes the imaginary time over which the action for the y-coordinates are
evaluated.

7. Conclusion

Starting with Berry’s random plane wave conjecture for chaotic Hamiltonian systems, we
have followed its implications for moderate and large numbers of particles N. In the large-N
limit, we have necessarily arrived at some familiar territory in statistical mechanics. We have
adopted a Green function, semiclassical perspective, arriving at a Gaussian–Bessel function
asymptotic result for energy Green functions, providing an analytic connection between
the quantum microcanonical and canonical ensembles. We have extended the incorporation
of constraints into the random wave hypothesis, considering several types of constraints,
including walls and interparticle collisions. Indeed, the guiding perspective has been to make
quantum waves ‘as random as possible subject to known prior constraints’. This must ultimately
be equivalent to the ergodic hypothesis of quantum statistical mechanics. The nonstandard
methods and perspective used here may possibly lead to new avenues of enquiry, and it is our
hope that the semiclassical approach might permit new ways of treating strongly interacting
systems.

The next stage in the development of this approach is to consider short-ranged potentials
between particles, i.e. interparticle collisions. The first corrections to the free particle
limit involve binary collisions, which can be computed semiclassically or using a delta
potential appropriate to s-wave scatterers. Again the effect of the other particles will
be to provide a thermal reservoir which essentially averages the Green function over a
thermal distribution of energies (if N is sufficiently large). We save this for a future paper,
where we hope to examine specific potentials and derive two-particle radial distribution
functions.
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